π-Frontier molecular orbitals in S = 2 ferryl species and elucidation of their contributions to reactivity.
نویسندگان
چکیده
S = 2 Fe(IV) ═ O species are key intermediates in the catalysis of most nonheme iron enzymes. This article presents detailed spectroscopic and high-level computational studies on a structurally-defined S = 2 Fe(IV) ═ O species that define its frontier molecular orbitals, which allow its high reactivity. Importantly, there are both π- and σ-channels for reaction, and both are highly reactive because they develop dominant oxyl character at the transition state. These π- and σ-channels have different orientation dependences defining how the same substrate can undergo different reactions (H-atom abstraction vs. electrophilic aromatic attack) with Fe(IV) ═ O sites in different enzymes, and how different substrates can undergo different reactions (hydroxylation vs. halogenation) with an Fe(IV) ═ O species in the same enzyme.
منابع مشابه
FevO active sites
The non-heme ferryl active sites are of significant interest for their application in biomedical and green catalysis. These sites have been shown to have an S = 1 or S = 2 ground spin state; the latter is functional in biology. Low-temperature magnetic circular dichroism (LT MCD) spectroscopy probes the nature of the excited states in these species including ligand-field (LF) states that are ot...
متن کاملPrediction of the structural and spectral properties for L,L-ethylenedicysteine diethylester (EC) and its complex with Technetium-99m radionuclide
The technetium-99m complex of the L,L-ethylenedicysteine diethylester (EC), of the brain imaging agent, was reported as a good choice for replacement of the renal nuclear medicines like OIH radiopharmaceutical. This present research work studies the structural, electronic and spectral properties of the EC compound and its complex with technetium-99m radionuclide from theoretical insight. All co...
متن کاملComputational Investigation of Structure and Reactivity of Methyl Hydrazinecarbodithioate
In this study, we theoretically investigated Methyl hydrazinecarbodithioate by quantum chemical calculations for geometry optimization, vibration frequencies, and electronic structure parameters. The geometry optimization by DFT, ab initio MP2 method and the frequency calculation by DFT method was performed at the highest available Pople style 6-311G++(3df,3pd) basis set level. The semi-emp...
متن کاملSolvent Effect on the Molecular Structure, Chemical Reactivity and Spectroscopy Properties of Z-Ligustilide: A Main Active Component of Multitude Umbelliferae Medicinal Plants
In this investigation, the structural, electronic properties, 13C and 1H NMR parameters and firsthyperpolarizability of Z-Ligustilide were explored. As well, the solvent effect on structural parameters, frontier orbital energies, electronic transitions, and 13C and 1H NMR parameters was illustrated based on Polarizable Continuum Model (PCM).These consequences specify that the polarity of solven...
متن کاملDesign of Novel Drugs (P3TZ, H2P3TZ, M2P3TZ, H4P3TZ and M4P3TZ) Based on Zonisamide for Autism Treatment by Binding to Potassium Voltage-gated Channel Subfamily D Member 2 (Kv4.2)
The present research article relates to the discovery of the novel drugs based on Zonisamide to treatment of autism disease. In first step, the electronic properties, reactivity and stability of the said compound are discussed. To attain these properties, the said molecular structure is optimized using B3LYP/6-311++G(d,p) level of theory at room temperature. The frontier molecular orbitals (FMO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 36 شماره
صفحات -
تاریخ انتشار 2012